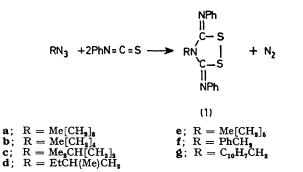
Reaction of Primary Alkyl Azides with Phenyl Isothiocyanate


By D. MICHAEL REVITT

(Faculty of Science and Engineering, Middlesex Polytechnic, Hendon, London NW4 4BT)

Summary The reaction of primary alkyl azides with phenyl isothiocyanate gives 4-alkyl-3,5-bis(phenylimino)-1,2,4-dithiazolidines as the main product.

 $\mathbf{24}$

HYDRAZOIC ACID and sodium azide react with phenyl isothiocyanate to form 5-phenylamino-1,2,3,4-thiatriazole and 1-phenyl-1,2,3,4-tetrazoline-5-thione respectively.¹ Trin-butyltin azide and triphenyltin azide give the corresponding 1:1 adducts.² Alkyl azides react with equimolar amounts of sulphonyl isothiocyanates to yield the 1,3dipolar cycloaddition products, 4-alkyl-5-sulphonylimino-1,2,3,4-thiatriazolines.3

Primary alkyl azides are now shown to react with phenyl isothiocyanate in 1:2 molar ratios giving 4-alkyl-3,5-bis-(phenylimino)-1,2,4-dithiazolidines (1) in 29-65% yield. Traces of 4-phenyl-3,5-bis(phenylimino)-1,2,4-dithiazolidine

¹ E. Lieber and J. Ramachandran, Canad. J. Chem., 1959, 37, 101.

- ² P. Dun and D. Oldfield, Austral. J. Chem., 1971, 24, 645.
 ³ E. Van Loock, J-M. Vandensavel, G. L'abbé, and G. Smets, J. Org. Ch
 ⁴ C. N. R. Rao and R. Venkataraghavan, Canad. J. Chem., 1964, 42, 43. J. Org. Chem., 1973, 38, 2916.
- ⁵ W. Borsche, Ber., 1942, 75, 1312.

(2) are formed in the preparation of (1a-e). The yellow, crystalline dithiazolidines are isolated after heating the pure reactants at 80-100 °C in the absence of solvent. The low solubility of (2) in light petroleum (b.p. 40-60 °C) enables efficient separation from (1a---e).

All products are characterised by i.r. [vmax (KBr) 1610 and 1580 (C=N), and 1300 (C-N) cm^{-1} ⁴ and mass spectral data and by a single crystal X-ray analysis of (1f; R =PhCH_a). A m/e 285 ion, common to all mass spectra, represents replacement of the alkyl (1a-g) or phenyl groups (2) attached to the ring nitrogen atom of the molecular ion by a hydrogen atom. Two important fragmentations from this ion, m/e 167 and m/e 118, can be explained by cleavage of the S(2)-C(3) and N(4)-C(5)bonds of the dithiazolidine ring.

The reaction mechanism may involve stepwise addition of the 2 molecules of PhNCS via a 3-membered ring inter-

mediate, RN-S-C=NPh. A similar route has been proposed for the formation of 1-phenyl-5-phenylimino-1,2,4dithiazolidine-3-thione by the reaction of PhN₃ with CS₂ in the presence of AlCl₃. The formation of (2) is not yet understood. Under identical conditions transfer of a phenyl group from PhNCS to (1a-e) does not occur and PhN₃ which could be formed as a by-product in the main reaction, does not react with PhNCS

The author thanks Dr. M. J. Begley, Professor T. J. King and Dr. D. B. Sowerby for the X-ray analysis of (11).

(Received, 22nd October 1974; Com. 1310.)